4.7 Article

Design of Engineered Reflectors for Radar Cross Section Modification

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2012.2220097

关键词

Frequency selective surface (FSS); high impedance surface; radar cross section (RCS); reflect-array

向作者/读者索取更多资源

A technique is proposed for the design of engineered reflectors consisting of doubly periodic arrays printed on thin grounded dielectric substrates that reflect an incoming wave from a given incoming direction to a predetermined outgoing direction. The proposed technique is based on a combination of Floquet theory for propagation in periodic structures and reflect-array principles. A flat surface designed to reflect a TE polarized wave incident at 45 degrees back in the direction of the impinging signal at 14.7 GHz is employed as an example. By means of full-wave simulations, it is demonstrated that the monostatic RCS of a finite reflector is comparable with the specular RCS of a metallic mirror of the same dimensions. It is further shown that comparably high monostatic RCS values are obtained for angles of incidence in the 30 degrees-60 degrees range, which are frequency dependent and thus open opportunities for target localization. A prototype array is fabricated and experimentally tested for validation. The proposed solution can be used to modify the radar cross section of a target. Other potential applications are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据