4.5 Article

Quantitative Assessment of Amide Proton Transfer (APT) and Nuclear Overhauser Enhancement (NOE) Imaging with Extrapolated Semisolid Magnetization Transfer Reference (EMR) Signals: II. Comparison of Three EMR Models and Application to Human Brain Glioma at 3 Tesla

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 75, 期 4, 页码 1630-1639

出版社

WILEY-BLACKWELL
DOI: 10.1002/mrm.25795

关键词

MT; CEST; APT; NOE; brain glioma

资金

  1. National Institutes of Health [R01EB009731, R01CA166171, R01NS083435, R21EB015555, R01EB015032, P41EB015909]

向作者/读者索取更多资源

Purpose:To evaluate the use of three extrapolated semisolid magnetization transfer reference (EMR) methods to quantify amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) signals in human glioma. Methods: Eleven patients with high-grade glioma were scanned at 3 Tesla. aEMR(2) (asymmetric magnetization-transfer or MT model to fit two-sided, wide-offset data), sEMR(2) (symmetric MT model to fit two-sided, wide-offset data), and sEMR(1) (symmetric MT model to fit one-sided, wide-offset data) were assessed. Z(EMR) and experimental data at 3.5 ppm and -3.5 ppm were subtracted to calculate the APT and NOE signals (APT(#) and NOE#), respectively. Results: The aEMR(2) and sEMR(1) models provided quite similar APT(#) signals, while the sEMR(2) provided somewhat lower APT(#) signals. The aEMR(2) had an erroneous NOE# quantification. Calculated APT(#) signal intensities of glioma (similar to 4%), much larger than the values reported previously, were significantly higher than those of edema and normal tissue. Compared with normal tissue, gadolinium-enhancing tumor cores were consistently hyperintense on the APT(#) maps and slightly hypointense on the NOE# maps. Conclusion: The sEMR(1) model is the best choice for accurately quantifying APT and NOE signals. The APT-weighted hyperintensity in the tumor was dominated by the APT effect, and the MT asymmetry at 3.5 ppm is a reliable and valid metric for APT imaging of gliomas at 3T. (C) 2015 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据