4.7 Article

Phenanthrodithiophene-Isoindigo Copolymers: Effect of Side Chains on Their Molecular Order and Solar Cell Performance

期刊

MACROMOLECULES
卷 48, 期 9, 页码 2875-2885

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.5b00622

关键词

-

资金

  1. MEXT Program for promoting the enhancement of research universities
  2. Okayama Foundation for Science and Technology
  3. Shorai Foundation For Science and Technology
  4. Grants-in-Aid for Scientific Research [15H00751] Funding Source: KAKEN

向作者/读者索取更多资源

The synthesis;,characterization, and solar cell application of newly developed semiconducting polymers containing phenanthro[1,2-b:8,7-b']dithiophene (PDT) combined with A bis(thienyl)isoindigo (IID) unit are,described. The polymers with longer, alkyl Chains are sufficiently soluble to be compatible with the processes required to manufacture solar cells. In conventional solar cell, devices, polymers with all branched alkyl chains tend to form a higher proportion of a well-ordered face-on crystallite in the pi-stack direction than those with both linear and branched alkyl chains, which significantly improves the Ell factor (FF), resulting in higher power conversion efficiency (PCE). In terms of optimizing the alkyl chain lengths; the installation of longer alkyl side chains on the polymer backbone leads to low molecular weight polymer, which may promote a large phase separation. As a result, the polymers 12OD and BOBO, beating shorter alkyl groups, performed better, and a BOBO polymer-based solar cell (PSC) showed the best PCE value up to 3.83%. In the inverted PSCs, the polymers with all branched alkyl chains have a higher face-on ratio than those with both linear and branched alkyl chains. Because of their improved J(sc), inverted PSCs with BOBO/PC71BM gave the best performance, with a PCE up to 5.28%. Although an obvious dependence of photovoltaic properties on molecular order-was observed in conventional solar cell devices, no trend was observed in inverted cells, Possibly attributable to their amorphous nature, which arises from the axisymmetrical structure of PDT, leading to less effective pi-pi overlap and low crystallinity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据