4.7 Article

Understanding of Relaxor Ferroelectric Behavior of Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) Terpolymers

期刊

MACROMOLECULES
卷 48, 期 8, 页码 2731-2739

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.5b00185

关键词

-

资金

  1. Office of Naval Research Office
  2. China Scholarship Council (CSC)

向作者/读者索取更多资源

Relaxor ferroelectric poly(vinylidene fluoride) (PVDF) based terpolymers are attracting tremendous interest because of their potential applications in advanced energy harvesting and storage devices. Fundamental understanding of the ferroelectric behaviors of poly(vinylidene fluoride) (PVDF) based terpolymers has proved elusive. Current research suggests that the existence of different hysteresis loops results from physical pinning of the ferroelectric domains by the bulky defect monomers and that the size of the defect monomer determines the ferroelectric behavior. In this study, a poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorotrifluoroethylene) random terpolymer is processed using a variety of methods and found to exhibit normal ferroelectric, single hysteresis loop (SHL), and double hysteresis loop (DHL) behaviors depending on the processing method. This indicates that the ferroelectric behavior of the terpolymer is related to not only the size of an individual defect unit but also how they are arranged within the relaxor ferroelectric phase. The results show that DHL behavior is a result of paraelectric domains that are promoted by long crystallization times, while the SHL behavior stems from a more random dispersion of these defects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据