4.7 Article

Dramatic Behavioral Differences of the Copolymerization Reactions of 1,4-Cyclohexadiene and 1,3-Cyclohexadiene Oxides with Carbon Dioxide

期刊

MACROMOLECULES
卷 48, 期 6, 页码 1679-1687

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.5b00172

关键词

-

资金

  1. National Science Foundation [CHE-1057743]
  2. Robert A. Welch Foundation [A-0923]
  3. Division Of Chemistry
  4. Direct For Mathematical & Physical Scien [1057743] Funding Source: National Science Foundation

向作者/读者索取更多资源

The copolymerization of 1,3-cyclohexadiene oxide (1,2-epoxy-3-cyclohexene) with CO2 in the presence of the binary catalyst (salen)CoX or (salen)CrX and onium salts was shown to selectively afford the completely alternating copolymer poly(1,3-cyclohexadiene carbonate) in good yield. In the process catalyzed by the cobalt(III) system, the reaction was 100% selective for copolymer, whereas employing the higher temperature chromium(III) catalyst, the reaction yielded in addition to copolymer a significant quantity of the cis-1,3-cyclohexadiene carbonate. Importantly, no corresponding trans-1,3-cyclohexadiene carbonate was produced. The reactivity of 1,3-cyclohexadiene oxide in coupling reactions with CO2 was strikingly greater than that of 1,4-cyclohexadiene oxide under either catalytic conditions. Authentic samples of the cis-cyclic carbonate and trans-cyclic carbonate were synthesized from epoxide and CO2 using ZnCl2/PPNI catalyzed and trans-diol/ethyl chloroformate routes, respectively. trans-1,3-Cyclohexadiene carbonate was fully characterized by X-ray crystallography. Unlike the copolymer derived from the symmetrical 1,4-cyclohexadiene oxide (1,2-epoxy-4-cyclohexene), deprotonation of poly(1,3-cyclohexadiene carbonate) by a strong base did not lead to depolymerization with formation of the trans-cyclic carbonate. Computational studies revealed the trans-cyclic carbonate was thermodynamically unstable relative to the polycarbonate, with the enthalpy of reaction being +12.8 kcal/mol. The enhanced reactivity of the 1,3-isomeric epoxide versus that of its 1,4-isomer was further demonstrated by the facile terpolymerization reaction of 1,3-cyclohexadiene oxide with propylene oxide and CO2. This latter process is useful for the preparation of cross-linked or functionalized polycarbonates via thiolene chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据