4.7 Article

In Situ Characterization of Polymer-Fullerene Bilayer Stability

期刊

MACROMOLECULES
卷 48, 期 2, 页码 383-392

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma5021227

关键词

-

资金

  1. National Institute of Standards and Technology Organic Photovoltaic Integrated Measurement Facility
  2. AREA
  3. NIST

向作者/读者索取更多资源

A consensus is emerging that mixed phases are present in bulk heterojunction organic photovoltaic (OPV) devices. Significant insights into the mixed phases have come from bilayer stability measurements, in which an initial sample consisting of material pure layers of donor and acceptor is thermally treated, resulting in swelling of one layer by the other. We present a comparative study of the stability of polymer/fullerene bilayers using two common OPV polymer donors poly(3-hexylthiophene), P3HT, and poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)], PCDTBT, and four fullerene acceptors phenyl-C61-butyric acid methyl ester, phenyl-C71-butyric acid methyl ester, [60]PCBM bis-adduct, and indene C-60 bis-adduct. Using in situ spectroscopic ellipsometry to characterize the quasi-steady state behavior of the films, we find that the polymer glass transition temperature (T-g) is critical to the bilayer stability, with no significant changes occurring below T-g of the high T-g PCDTBT. Above the polymer Tg, we find the behavior is irreversible and most consistent with swelling of the polymer by the fullerene, constrained by tie chains in the polymer network and influenced by the rubbery dynamics of the mixed region. The swelling varies significantly with the nature of the fullerene and the polymer. Across the eight systems studied, there is no clear relationship between swelling and OPV device performance. The relationship between the observed swelling and the underlying fullerene-polymer miscibility is explored via FloryRehner theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据