4.7 Article

Combined Ionic and Hydrogen Bonding in Polymer Multi layer Thin Film for High Gas Barrier and Stretchiness

期刊

MACROMOLECULES
卷 48, 期 16, 页码 5723-5729

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.5b01279

关键词

-

向作者/读者索取更多资源

A unique polymer multilayer thin film with high gas barrier at high strain (>10%) was achieved with a combination of ionic and hydrogen bonding. Layer-by-layer assembly was used to deposit quadlayers (QL) of polyethylenimine (PEI), poly(acrylic acid) (PAA), poly(ethylene oxide) (PEO), and PAA. Altering the deposition pH of the various layers resulted in different physical and mechanical properties. PEI/PAA/PEO/PAA quadlayers assembled at pH 10/4/2.5/2.5 grow much thicker than the same film with all components deposited at pH 3, which is due to a porosity transition during assembly and in-and-out diffusion of the partially charged polyelectrolytes with high chain mobility (PEI at pH 10 and PAA at pH 4). The change in pH during the film assembly induces a porous structure in the 10/4/2.5/2.5 film that results in poor gas barrier. Films deposited on 1 mm thick polyurethane rubber at pH 3 have a densely packed structure with no pores. A 20 QL film (similar to 1 mu m thick) achieves an oxygen transmission rate 15 times lower than uncoated rubber due to the synergistic effect of the interdigitated layers of ionic and hydrogen bonding. When stretched 10%, the barrier improves by a factor of 28 relative to uncoated polyurethane. This combination of stretchability and high gas barrier is unprecedented and offers the opportunity to produce relatively high barrier elastomers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据