4.4 Article

Evaluation of Present Numerical Models for Predicting Metal Cutting Performance And Residual Stresses

期刊

MACHINING SCIENCE AND TECHNOLOGY
卷 19, 期 2, 页码 183-216

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10910344.2015.1018537

关键词

machining; surface integrity; benchmark; numerical simulation

向作者/读者索取更多资源

Efforts on numerical modeling and simulation of metal cutting operations continue to increase due to the growing need for predicting the machining performance. A significant number of numerical methods, especially the Finite Element (FE) and the Mesh-free methods, are being developed and used to simulate the machining operations. However, the effectiveness of the numerical models to predict the machining performance depends on how accurately these models can represent the actual metal cutting process in terms of the input conditions and the quality and accuracy of the input data used in such models. This article presents results from a recently conducted comprehensive benchmark study, which involved the evaluation of various numerical predictive models for metal cutting. This study had a major objective to evaluate the effectiveness of the current numerical predictive models for machining performance. Five representative work materials were carefully selected for this study from a range of most commonly used work materials, along with a wide range of cutting conditions usually found in the published literature. The differences between the predicted results obtained from the various numerical models using different FE and Mesh-free codes are evaluated and compared with those obtained experimentally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据