4.7 Article

SWIPT-Enabled Relaying in IoT Networks Operating With Finite Blocklength Codes

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSAC.2018.2872361

关键词

Energy harvesting; finite blocklength; power splitting; relaying; SWIPT; time switching; URLLC

资金

  1. DFG [SCHM 2643, StUpPD 262-17]

向作者/读者索取更多资源

This paper considers simultaneous wireless information and power transfer (SWIPT) mechanisms in a relaying-assisted ultra-reliable low latency communication network operating with finite blocklength codes. The reliability of the network is maximized by the optimal selection of SWIPT parameters under both a power splitting (PS) protocol and a time switching (TS) protocol. In addition, we propose a protocol to improve the reliability performance by introducing a tradeoff between the PS and TS protocols. To further improve the reliability, a joint design is provided, which aligns the optimal selection of SWIPT parameters together with a blocklength allocation between two relaying hops. Via simulations, we validate our analytical model and show that the proposed algorithm achieves the same performance as that obtained with exhaustive search. In addition, we evaluate the considered network, and characterize the impact of blocklength, transmit power, and packet size on the reliability of the considered SWIPT-enabled relaying network. Finally, the performance advantages of the proposed protocol (in comparison with the PS and TS protocols) and the proposed joint designs are investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据