4.6 Article

A Scaling Roadmap and Performance Evaluation of In-Plane and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory

期刊

IEEE JOURNAL OF SOLID-STATE CIRCUITS
卷 48, 期 2, 页码 598-610

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSSC.2012.2224256

关键词

Cache; macromodel; magnetic tunnel junction (MTJ); roadmap; scalability; spin torque transfer (STT); STT-MRAM; variability

资金

  1. Intel post-CMOS circuits and architecture program
  2. Samsung Electronics

向作者/读者索取更多资源

This paper explores the scalability of in-plane and perpendicular MTJ based STT-MRAMs from 65 nm to 8 nm while taking into consideration realistic variability effects. We focus on the read and write performances of a STT-MRAM based cache rather than the obvious advantages such as the denser bit-cell and zero static power. An accurate MTJ macromodel capturing key MTJ properties was adopted for efficient Monte Carlo simulations. For the simulation of access devices and peripheral circuitries, ITRS projected transistor parameters were utilized and calibrated using the MASTAR tool that has been widely used in industry. 6T SRAM and STT-MRAM arrays were implemented with aggressive assist schemes to mimic industrial memory designs. A constant J(C0) . RA/VDD scaling scenario was used which to the first order gives the optimal balance between read and write margins of STT-MRAMs. The thermal stability factor ensuring a 10 year retention time was obtained by adjusting the free layer thickness as well as assuming improvement in the crystalline anisotropy. Our studies based on the proposed scaling methodology show that in-plane STT-MRAM will outperform SRAM from 15 nm node, while its perpendicular counterpart requires further innovations in MTJ material in order to overcome the poor write performance scaling from 22 nm node onwards.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据