4.6 Article Proceedings Paper

Class-D CMOS Oscillators

期刊

IEEE JOURNAL OF SOLID-STATE CIRCUITS
卷 48, 期 12, 页码 3105-3119

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSSC.2013.2271531

关键词

Class-D; CMOS; high efficiency; low phase noise; low-voltage; voltage-controlled oscillator (VCO)

资金

  1. European Union [248277]
  2. Swedish Foundation for Strategic Research (SSF) under the DARE Project

向作者/读者索取更多资源

This paper presents class-D CMOS oscillators capable of an excellent phase noise performance from a very low power supply voltage. Starting from the recognition of the time-variant nature of the class-D LC tank, accurate expressions of the oscillation frequency, oscillation amplitude, current consumption, phase noise, and figure-of-merit (FoM) have been derived. Compared with the commonly used class-B/C architectures, the optimal class-D oscillator produces less phase noise for the same power consumption, at the expense of a higher power supply pushing. A prototype of a class-D voltage-controlled oscillator (VCO) targeted for mobile applications, implemented in a standard 65-nm CMOS process, covers a 46% tuning range between 3.0 and 4.8 GHz; drawing 10 mA from 0.4 V, the phase noise at 10-MHz offset from 4.8 GHz is -143.5 dBc/Hz, for an FoM of 191 dBc/Hz with less than 1-dB variation across the tuning range. A version of the same VCO with a resonant tail filter displays a lower 1/f(3) phase-noise corner and improves the FoM by 1 dB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据