4.6 Article Proceedings Paper

A high-efficiency DC-DC converter using 2 nH integrated inductors

期刊

IEEE JOURNAL OF SOLID-STATE CIRCUITS
卷 43, 期 4, 页码 844-854

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSSC.2008.917321

关键词

magnetic coupling; ripple cancellation; switch-mode voltage regulator; synchronous rectification

向作者/读者索取更多资源

Historically, buck converters have relied on high-Q inductors on the order of I to 100 mu H to achieve a high efficiency. Unfortunately, on-chip inductors are physically large and have poor series resistances, which result in low-efficiency converters. To mitigate this problem, on-chip magnetic coupling is exploited in the proposed stacked interleaved topology to enable the use of small (2 nH) on-chip inductors in a high-efficiency buck converter. The dramatic decrease in the inductance value is made possible by the unique bridge timing of the stacked design that causes magnetic coupling to boost the converter's efficiency by reducing the current ripple in each inductor. The magnetic coupling is realized by stacking the two inductors on top of one another, which not only lowers the required inductance, but also reduces the chip area consumed by the two inductors. The measured conversion efficiency for the prototype circuit, implemented in a 130-nm CMOS technology, shows more than a 15% efficiency improvement over a linear converter for low output voltages rising to a peak efficiency of 77.9% for a 0.9 V output. These efficiencies are comparable to converters implemented with higher Q inductors, validating that the proposed techniques enable high-efficiency converters to be realized with small on-chip inductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据