4.7 Article Proceedings Paper

Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTSP.2007.914882

关键词

Cognitive radio; cooperative communications; energy detection; nonlinear optimization; spectrum sensing

向作者/读者索取更多资源

Cognitive radio technology has been proposed to improve spectrum efficiency by having the cognitive radios act as secondary users to opportunistically access under-utilized frequency bands. Spectrum sensing, as a key enabling functionality in cognitive radio networks, needs to reliably detect signals from licensed primary radios to avoid harmful interference. However, due to the effects of channel fading/shadowing, individual cognitive radios may not be able to reliably detect the existence of a primary radio. In this paper, we propose an optimal linear cooperation framework for spectrum sensing in order to accurately detect the weak primary signal. Within this framework, spectrum sensing is based on the linear combination of local statistics from individual cognitive radios. Our objective is to minimize the interference to the primary radio while meeting the requirement of opportunistic spectrum utilization. We formulate the sensing problem as a nonlinear optimization problem. By exploiting the inherent structures in the problem formulation, we develop efficient algorithms to solve for the optimal solutions. To further reduce the computational complexity and obtain solutions for more general cases, we finally propose a heuristic approach, where we instead optimize a modified deflection coefficient that characterizes the probability distribution function of the global test statistics at the fusion center. Simulation results illustrate significant cooperative gain achieved by the proposed strategies. The insights obtained in this paper are useful for the design of optimal spectrum sensing in cognitive radio networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据