4.7 Article

High-Power, Low-Noise 1.5-μm Slab-Coupled Optical Waveguide (SCOW) Emitters: Physics, Devices, and Applications

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTQE.2011.2126041

关键词

External-cavity lasers; mode-locked lasers; noise figure; optical waveguides; power amplifiers; quantum-well devices; semiconductor optical amplifiers; single-frequency lasers

资金

  1. Defense Advanced Research Projects Agency [FA8721-05-C-0002]

向作者/读者索取更多资源

We review the development of a new class of high-power, edge-emitting, semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. We restrict the scope to InP-based devices incorporating either InGaAsP or InGaAlAs quantum-well active regions and operating in the 1.5-mu m-wavelength region. Key properties of the SCOW gain medium include large transverse optical mode dimensions (> 5 x 5 mu m), ultralow optical confinement factor (Gamma similar to 0.25-1%), and small internal loss coefficient (alpha(i) similar to 0.5 cm(-1)). These properties have enabled the realization of 1) packaged Watt-class semiconductor optical amplifers (SOAs) having low-noise figure (4-5 dB), 2) monolithic passively mode-locked lasers generating 0.25-W average output power, 3) external-cavity fiber-ring actively mode-locked lasers exhibiting residual timing jitter of < 10 fs (1 Hz to Nyquist), and 4) single-frequency external-cavity lasers producing 0.37-W output power with Gaussian (Lorentzian) linewidth of 35 kHz (1.75 kHz) and relative intensity noise (RIN)<-160 dB/Hz from 200 kHz to 10 GHz. We provide an overview the SCOW design principles, describe simulation results that quantify the performance limitations due to confinement factor, linear optical loss mechanisms, and nonlinear two-photon absorption (TPA) loss, and review the SCOW devices that have been demonstrated and applications that these devices are expected to enable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据