4.7 Article

Light emission from silicon in photonic crystal nanocavity

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTQE.2008.918941

关键词

light emission; light extraction; photonic crystal; photonic nanocavity; silicon

向作者/读者索取更多资源

We have introduced a photonic crystal into a single-crystal silicon slab in order to manipulate the light emission. When the lattice constant of a defect-free photonic crystal matches the wavelength of light in the medium, the light emitted from the silicon is resonantly extracted at the photonic band edge within the escape light cone. When the lattice constant is larger than the wavelength, Brillouin zone folding of the photonic band also allows the light to be extracted; we achieved an intensity that was enhanced by a factor of similar to 20 due to the diffraction of internal light into the light cone. We have also created a point defect in photonic crystals with smaller lattice constants that functions as a nanocavity and strongly interacts with the silicon emitter. Four cavity modes were observed, with different Q-factors and emission patterns. The mode orders were assigned using the resonant wavelengths and polarizations. The observed emission at room temperature was enhanced by a factor of similar to 30 in comparison to that of an unprocessed area of silicon-on-insulator. Our study demonstrates that employing a photonic crystal nanocavity in silicon can greatly improve the light extraction efficiency, the characteristics of the radiation pattern, and the internal quantum efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据