4.7 Article

A Review of Nonlinear Hyperspectral Unmixing Methods

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2014.2320576

关键词

Hyperspectral imaging; hyperspectral remote sensing; image analysis; image processing; imaging spectroscopy; inverse problems; machine learning algorithms; nonlinear mixtures; remote sensing; spectroscopy; unmixing

向作者/读者索取更多资源

In hyperspectral unmixing, the prevalent model used is the linear mixing model, and a large variety of techniques based on this model has been proposed to obtain endmembers and their abundances in hyperspectral imagery. However, it has been known for some time that nonlinear spectral mixing effects can be a crucial component in many real-world scenarios, such as planetary remote sensing, intimate mineral mixtures, vegetation canopies, or urban scenes. While several nonlinear mixing models have been proposed decades ago, only recently there has been a proliferation of nonlinear unmixing models and techniques in the signal processing literature. This paper aims to give an historical overview of the majority of nonlinear mixing models and nonlinear unmixing methods, and to explain some of the more popular techniques in detail. The main models and techniques treated are bilinear models, models for intimate mineral mixtures, radiosity-based approaches, ray tracing, neural networks, kernel methods, support vector machine techniques, manifold learning methods, piece-wise linear techniques, and detection methods for nonlinearity. Furthermore, we provide an overview of several recent developments in the nonlinear unmixing literature that do not belong into any of these categories.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据