4.7 Article

EeteS-The EnMAP End-to-End Simulation Tool

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2012.2188994

关键词

End-to-end simulation; EnMAP; image pre-processing; sensor calibration; signal-to-noise ratio

资金

  1. German Federal Ministry of Economic Affairs and Technology
  2. German Space Administration

向作者/读者索取更多资源

The design of future Earth imaging systems, the optimization of fundamental instrument parameters, and the development and evaluation of data pre-processing and scientific-exploitation algorithms require an accurate end-to-end simulation of the entire image generation and processing chain. For this purpose, the end-to-end simulation software EeteS has been developed within the framework of the Environmental Mapping and Analysis Program (EnMAP) mission. This paper presents the EeteS simulation approach and software implementation focusing on calibration and pre-processing. The sequential processing chain of the EnMAP scene simulator consists of four independent parts-the atmospheric, spatial, spectral and radiometric modules. This forward simulator is coupled with a backward simulation branch consisting of calibration modules (non-linearity, dark current and absolute radiometric calibration) and a series of pre-processing modules (radiometric calibration, co-registration, atmospheric correction and orthorectification) forming the complete end-to-end simulation tool. In the result EeteS is capable of simulating EnMAP-like raw image scenes (L0) taking into account a variety of instrumental and environmental configurations. Furthermore, EeteS allows simulations of EnMAP reflectance images carrying out the complete L1 and L2 processing chains. Analysis of the intermediate and final EeteS simulation products has shown the accurate, reliable and consistent performance of the developed modules enabling the system to support technical decision-making processes required for the development of the EnMAP sensor. EeteS has also been used to estimate the SNR characteristics of potential EnMAP products after calibration and pre-processing. Comparing the results to SNR characteristics achieved by the already existing EO-1 Hyperion system has shown a significantly improved SNR which can be expected from future EnMAP data products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据