4.4 Article

On the Carrier Injection Efficiency and Thermal Property of InGaN/GaN Axial Nanowire Light Emitting Diodes

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JQE.2014.2317732

关键词

Nanowire; GaN; light emitting diode; surface recombination; Joule heating

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Fonds de recherch sur la nature et les technologies

向作者/读者索取更多资源

We have investigated the impact of surface recombination on the effective carrier injection efficiency and the Joule heating of axial InGaN/GaN nanowire light-emitting diodes (LEDs). The results reveal that the carrier injection efficiency of such devices is extremely low (<10%), due to the severe carrier loss through nonradiative surface recombination. It is further observed that the thermal resistance of typical nanowire LEDs is comparable with, or lower than that of their planar counterparts, in spite of the reduced thermal conductivity of nanowires. The poor carrier injection efficiency, however, leads to significantly elevated junction temperatures for nanowire LEDs. We have further demonstrated, both theoretically and experimentally, that the carrier injection efficiency can be significantly improved in p-doped nanowires, due to the downward surface band bending, and in InGaN/GaN/AlGaN dot-in-a-wire core-shell nanoscale heterostructures, due to the superior carrier confinement offered by the large bandgap AlGaN shell. This paper offers important insight for the design and epitaxial growth of high-performance nanowire LEDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据