4.6 Article

Good Endurance and Memory Window for Ti/HfOx Pillar RRAM at 50-nm Scale by Optimal Encapsulation Layer

期刊

IEEE ELECTRON DEVICE LETTERS
卷 32, 期 3, 页码 390-392

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LED.2010.2099201

关键词

HfOx; pillar; resistive memory; RRAM

向作者/读者索取更多资源

A scaling feasibility for the process integration of the Ti/HfOx resistance memory with pillar structure is studied in this letter. An empirical model is successfully developed to correlate the forming voltage of devices to their cell sizes. The abnormal increase in the breakdown voltage and the absence of the resistance switching characteristic for the scaled devices (< 150 nm) are observed for the devices encapsulated with the SiO2 film. This result is attributed to the reduction in the oxygen-gettering ability of the Ti top layer by the SiO2 passivation layer. For scaled devices with the S3N4 passivation layer, the Ti film retains the same oxygen-gettering ability as the large devices. A 0.5-V reduction in the forming voltage for the 50-nm devices by using the S3N4, instead of the SiO2, layer is observed. The 50-nm devices with the S3N4 encapsulating layer exhibits improved memory performances such as large on/off ratio (> 100), high temperature stability at 200 degrees C for 500 min, and satisfactory endurance (10(4) cycles).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据