4.7 Article

Aerial Drones with Location-Sensitive Ears

期刊

IEEE COMMUNICATIONS MAGAZINE
卷 56, 期 7, 页码 154-160

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/MCOM.2018.1700775

关键词

-

向作者/读者索取更多资源

Micro aerial vehicles (MAVs), an emerging class of aerial drones, are fast turning into a high value mobile sensing platform for applications across sectors ranging from industrial to humanitarian. While MAVs have a large sensory gamut at their disposal; vision continues to dominate the external sensing scene, which has limited usability in scenarios that offer non-visual clues such as auditory. Therefore, we endeavor to provision a MAV auditory system (i.e., ears); and as part of this goal, our preliminary aim is to develop a robust acoustic localization system for detecting sound sources in the physical space of interest. However, devising this capability is extremely challenging due to strong ego-noise from the MAV propeller units, which is both wideband and non-stationary. It is well known that beamformers with large sensor arrays can overcome high noise levels; but in an attempt to cater to the platform (i.e., space, payload, and computation) constraints of a MAV, we propose DroneEARS: a binaural sensing system for geo-locating sound sources. It combines the benefits of sparse (two elements) sensor array design (for meeting the platform constraints), and our proposed mobility induced beamforming based on intra-band and inter-measurement beam fusion (for overcoming the severe ego-noise and its other complex characteristics) to significantly enhance the received signal-to-noise ratio (SNR). We demonstrate the efficacy of DroneEARS, in terms of SNR improvement obtained over many widely used techniques, by empirical evaluations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据