4.7 Article

Design and Optimization of Fiber Optic Small-Cell Backhaul Based on an Existing Fiber-to-the-Node Residential Access Network

期刊

IEEE COMMUNICATIONS MAGAZINE
卷 51, 期 9, 页码 62-69

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/MCOM.2013.6588652

关键词

-

向作者/读者索取更多资源

As the number of wireless users and per-user bandwidth demands continue to increase, both the vendor and carrier communities agree that wireless networks must evolve toward more dense deployments. So-called heterogeneous networks are a commonly proposed evolution, whereby existing macrocellular networks are supplemented with an underlay of small cells. The placement of new small-cell sites is typically determined based on various location-dependent factors such as radio propagation calculations, user densities, and measurements of congestion and demand. The backhaul network, which can account for a significant portion of the total cost of the deployment, is then designed in reaction to the placement of small cells. In contrast, we describe a design method that first considers the locations of existing fibered and powered facilities that might be leveraged to provide inexpensive backhaul. Naturally, such a method is only feasible if the carrier has a legacy local fiber network. This article describes an efficient fiber backhaul strategy for a small-cell network, which leverages facilities associated with an existing FTTN residential access network. Once potential small-cell sites are determined from among all FTTN remote terminals, optimization techniques are used to choose the most efficient subset of sites for maximum coverage, and to design the fiber backhaul architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据