4.5 Article

The deep water abundance on Jupiter: New constraints from thermochemical kinetics and diffusion modeling

期刊

ICARUS
卷 209, 期 2, 页码 602-615

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2010.03.029

关键词

Jupiter, Atmosphere; Atmospheres, Chemistry; Abundances, Atmospheres; Planetary formation

资金

  1. NASA [NNHO8ZDA001N]
  2. Lunar and Planetary Institute/USRA (NASA) [NCC5-679]

向作者/读者索取更多资源

We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter's atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) x 10(-3) in Jupiter's deep troposphere, corresponding to an enrichment of 0.3-7.3 times the protosolar abundance (assumed to be H2O/H-2 = 9.61 x 10(-4)). Our results suggest that Jupiter's oxygen enrichment is roughly similar to that for carbon, nitrogen, and other heavy elements, and we conclude that formation scenarios that require very large (>8x solar) enrichments in water can be ruled out. We also evaluate and refine the simple time-constant arguments currently used to predict the quenched CO abundance on Jupiter, other giant planets, and brown dwarfs. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据