4.5 Article

Mid-infrared spectra of the shocked Murchison CM chondrite: Comparison with astronomical observations of dust in debris disks

期刊

ICARUS
卷 207, 期 1, 页码 45-53

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2009.11.018

关键词

Infrared observations; Comets, Dust; Debris disks; Meteorites

资金

  1. Ministry of Education, Culture, Sports, Science and Technology
  2. Grant-in-Aid for Scientific Research [17740350, 16204042, 19540475]
  3. Grants-in-Aid for Scientific Research [17740350, 16204042, 19540475] Funding Source: KAKEN

向作者/读者索取更多资源

We present laboratory mid-infrared transmission/absorption spectra obtained from matrix of the hydrated Murchison CM meteorite experimentally shocked at peak pressures of 10-49 GPa, and compare them to astronomical observations of circumstellar dust in different stages of the formation of planetary systems. The laboratory spectra of the Murchison samples exhibit characteristic changes in the infrared features. A weakly shocked sample (shocked at 10 GPa) shows almost no changes from the unshocked sample dominated by hydrous silicate (serpentine). Moderately shocked samples (21-34 GPa) have typical serpentine features gradually replaced by bands of amorphous material and olivine with increasing shock pressure. A strongly shocked sample (36 GPa) shows major changes due to decomposition of the serpentine and due to devolatilization. A shock melted sample (49 GPa) shows features of olivine recrystallized from melted material. The infrared spectra of the shocked Murchison samples show similarities to astronomical spectra of dust in various young stellar objects and debris disks. The spectra of highly shocked Murchison samples (36 and 49 GPa) are similar to those of dust in the debris disks of HD113766 and HD69830, and the transitional disk of HD100546. The moderately shocked samples (21-34 GPa) exhibit spectra similar to those of dust in the debris disks of Beta Pictoris and BD+20307, and the transitional disk of GM Aur. An average of the spectra of all Murchison samples (0-49 GPa) has a similarity to the spectrum of the older protoplanetary disk of SU Auriga. In the gas-rich transitional and protoplanetary disks, the abundances of amorphous silicates and gases have widely been considered to be a primary property. However, our study suggests that impact processing may play a significant role in generating secondary amorphous silicates and gases in those disks. Infrared spectra of the shocked Murchison samples also show similarities to the dust from comets (C/2002 V1, C/2001 RX14, 9P/Tempel 1, and Hale Bopp), suggesting that the comets also contain shocked Murchison-like material. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据