4.3 Article

A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard

期刊

LIMNOLOGY AND OCEANOGRAPHY-METHODS
卷 13, 期 6, 页码 267-287

出版社

WILEY
DOI: 10.1002/lom3.10024

关键词

-

资金

  1. UiT the Arctic University of Norway, Tromso [N-9037]
  2. COST Action (PERGAMON) [ES0902]
  3. ERASMUS Mundus program of the EU (grant VECCEU)
  4. Becas de doctorado en el extranjero, BECAS CHILE: CONICYT PAI/INDUSTRIA program of the Chilean government [79090016]
  5. Norwegian Research Council [223259]

向作者/读者索取更多资源

Quantifying marine methane fluxes of free gas (bubbles) from the seafloor into the water column is of importance for climate related studies, for example, in the Arctic, reliable methodologies are also of interest for studying man-made gas and oil leakage systems at hydrocarbon production sites. Hydroacoustic surveys with singlebeam and nowadays also multibeam systems have been proven to be a successful approach to detect bubble release from the seabed. A number of publications used singlebeam echosounder data to indirectly quantify free gas fluxes via empirical correlations between gas fluxes observed at the seafloor and the hydroacoustic response. Others utilize the hydroacoustic information in an inverse modeling approach to derive bubble fluxes. Here, we present an advanced methodology using data from splitbeam echosounder systems for analyzing gas release water depth (> 100m). We introduce a new MATLAB-based software for processing and interactively editing data and we present how bubble-size distribution, bubble rising speed and the model used for calculating the backscatter response of single bubbles influence the final gas flow rate calculations. As a result, we highlight the need for further investigations on how large, wobbly bubbles, bubble clouds, and multi-scattering influence target strength. The results emphasize that detailed studies of bubble-size distributions and rising speeds need to be performed in parallel to hydroacoustic surveys to achieve realistic mediated methane flow rate and flux quantifications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据