4.7 Article

Nitrogen loads explain primary productivity in estuaries at the ecosystem scale

期刊

LIMNOLOGY AND OCEANOGRAPHY
卷 60, 期 5, 页码 1751-1762

出版社

WILEY
DOI: 10.1002/lno.10136

关键词

-

资金

  1. Australian Research Council [LP110100040]
  2. Melbourne Water
  3. Victorian Department of Environment and Primary Industries
  4. Environment Protection Authority of Victoria
  5. Parks Victoria
  6. Gippsland Lakes Taskforce
  7. Australian Research Council [LP110100040] Funding Source: Australian Research Council

向作者/读者索取更多资源

Increased nutrient loads stimulate estuary primary productivity and can alter the structure and function of biological communities within estuaries, particularly when producer groups respond differently to changes in nutrient availability. Here, the relative influence of riverine inputs of nitrogen and phosphorus were compared to determine their contribution to estuarine primary producers at large spatial scales. Indices of demersal (extent of macroalgae relative to other vegetation, total shallow water area vegetated) and planktonic (seasonally averaged chlorophyll concentration) primary producer communities were derived at whole-of-ecosystem scales in 14 estuaries dispersed across a longitudinal gradient using aerial imaging, underwater videography and in situ monitoring. A model selection framework was used to relate annual nutrient loads (total nitrogen [TN], dissolved inorganic nitrogen [DIN], total phosphorus [TP]), sediment loads (TSS), molar stoichiometric load ratios (TNM: TPM), and estuary water residence times to the demersal and planktonic indices. Dissolved inorganic nitrogen was the best predictor of the extent of macroalgae, total vegetation coverage, and the concentration of planktonic chlorophyll. Rapid increases in all three indices occurred at inorganic nitrogen loads of similar to 5-10 Mg km(-2) yr(-1). There was some evidence that TNM: TPM, TP and TSS loads were informative model covariates. Relative to DIN loads, TP loads were a poor predictor of the macroalgal and planktonic indices. These findings underscore the critical role of catchment-derived nitrogen in contributing to producer communities at the whole-of-ecosystem scale and support the growing consensus that nitrogen loads (in addition to phosphorus) must be managed to effectively alleviate eutrophication in estuaries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据