4.7 Article

Tryptase/Protease-Activated Receptor 2 Interactions Induce Selective Mitogen-Activated Protein Kinase Signaling and Collagen Synthesis by Cardiac Fibroblasts

期刊

HYPERTENSION
卷 58, 期 2, 页码 264-270

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.111.169417

关键词

tryptase; protease-activated receptor; mitogen-activated protein kinase; heart; fibrosis; ED-A fibronectin; mast cell

资金

  1. UNCF
  2. National Heart, Lung, and Blood Institute [R01-HL-62228, R01-HL-073990, K99HL093215]

向作者/读者索取更多资源

The mast cell product, tryptase, has recently been implicated to mediate fibrosis in the hypertensive heart. Tryptase has been shown to mediate noncardiac fibroblast function via activation of protease-activated receptor 2 and subsequent activation of the mitogen-activated protein kinase pathway, including extracellular signal-regulated kinase 1/2. Therefore, we hypothesized that this pathway may be a mechanism leading to fibrosis in the hypertensive heart. Isolated adult cardiac fibroblasts were treated with tryptase, which induced activation of extracellular signal-regulated kinase 1/2 via protease-activated receptor 2. Blockade of protease activated receptor 2 with FSLLRY (10 mu mol/L) and inhibition of the extracellular signal-regulated kinase pathway with PD98059 (10 mu mol/L) prevented collagen synthesis in isolated cardiac fibroblasts stimulated with tryptase. In contrast, p38 mitogen-activated protein kinase and stress-activated protein/c-Jun N-terminal kinase were not activated by tryptase. Cardiac fibroblasts isolated from spontaneously hypertensive rats showed this same pattern of activation. Treatment of spontaneously hypertensive rats with FSLLRY prevented fibrosis in these animals, indicating the in vivo applicability of the cultured fibroblast findings. Also, tryptase induced a myofibroblastic phenotype indicated by elevations in alpha-smooth muscle actin and extra type III domain A (ED-A) fibronectin. Thus, the results from this study demonstrate the importance of tryptase for inducing a cardiac myofibroblastic phenotype, ultimately leading to the development of cardiac fibrosis. Specifically, tryptase causes cardiac fibroblasts to increase collagen synthesis via a mechanism involving activation of protease-activated receptor 2 and subsequent induction of extracellular signal-regulated kinase signaling. (Hypertension. 2011;58:264-270.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据