4.7 Article

Oxidative Stress Causes Renal Angiotensin II Type 1 Receptor Upregulation, Na+/H+ Exchanger 3 Overstimulation, and Hypertension

期刊

HYPERTENSION
卷 57, 期 3, 页码 452-U218

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.110.162339

关键词

angiotensin II; Ca2+-dependent calmodulin; hypertension; janus kinase; phospholipase C

资金

  1. American Heart Association [0835428N]

向作者/读者索取更多资源

Oxidative stress modulates angiotensin (Ang) II type 1 receptor (AT(1)R) expression and function. Ang II activates renal Na+/H+ exchanger 3 (NHE3) to increase sodium reabsorption, but the mechanisms are still elusive. In addition, the upregulation of AT(1)R during oxidative stress could promote sodium retention and lead to an increase in blood pressure. Herein, we investigated the mechanism of Ang II-mediated, AT(1)R-dependent renal NHE3 regulation and effect of oxidative stress on AT(1)R signaling and development of hypertension. Male Sprague-Dawley rats received tap water (control) or 30 mmol/L of L-buthionine-sulfoximine, an oxidant, with and without 1 mmol/L of Tempol, an antioxidant, for 3 weeks. L-Buthionine-sulfoximine-treated rats exhibited oxidative stress and high blood pressure. Incubation of renal proximal tubules with Ang II caused significantly higher NHE3 activation in L-buthionine-sulfoximine-treated rats compared with control. The activation of NHE3 was sensitive to AT(1)R blocker and inhibitors of phospholipase C, tyrosine kinase, janus kinase 2 (Jak2), Ca2+-dependent calmodulin (CaM), and Ca2+ chelator. Also, incubation of proximal tubules with Ang II caused Jak2-dependent CaM phosphorylation, which led to Jak2-CaM complex formation and increased Jak2-CaM interaction with NHE3. The activation of these signaling molecules was exaggerated in L-buthionine-sulfoximine-treated rats, whereas Tempol normalized the AT(1)R signaling. In conclusion, Ang II activates renal proximal tubular NHE3 through novel pathways that involve phospholipase C and an increase in intracellular Ca2+, Jak2, and CaM. In addition, oxidative stress exaggerates Ang II signaling, which leads to overstimulation of renal NHE3 and contributes to an increase in blood pressure. (Hypertension. 2011;57:452-459.). Online Data Supplement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据