4.6 Article

Dynamic, discontinuous stream networks: hydrologically driven variations in active drainage density, flowing channels and stream order

期刊

HYDROLOGICAL PROCESSES
卷 28, 期 23, 页码 5791-5803

出版社

WILEY
DOI: 10.1002/hyp.10310

关键词

drainage density; stream network; stream order; channel head; subsurface flow; catchment hydrology; headwater basins

资金

  1. Berkeley Water Center grant
  2. National Science Foundation
  3. NSF Idaho EPSCoR Program [EPS-0814387]

向作者/读者索取更多资源

Despite decades of research on the ecological consequences of stream network expansion, contraction and fragmentation, surprisingly little is known about the hydrological mechanisms that shape these processes. Here, we present field surveys of the active drainage networks of four California headwater streams (4-27km(2)) spanning diverse topographic, geologic and climatic settings. We show that these stream networks dynamically expand, contract, disconnect and reconnect across all the sites we studied. Stream networks at all four sites contract and disconnect during seasonal flow recessions, with their total active network length, and thus their active drainage densities, decreasing by factors of two to three across the range of flows captured in our field surveys. The total flowing lengths of the active stream networks are approximate power-law functions of unit discharge, with scaling exponents averaging 0.27 +/- 0.04 (range: 0.18-0.40). The number of points where surface flow originates obey similar power-law relationships, as do the lengths and origination points of flowing networks that are continuously connected to the outlet, with scaling exponents averaging 0.36-0.48. Even stream order shifts seasonally by up to two Strahler orders in our study catchments. Broadly, similar stream length scaling has been observed in catchments spanning widely varying geologic, topographic and climatic settings and spanning more than two orders of magnitude in size, suggesting that network extension/contraction is a general phenomenon that may have a general explanation. Points of emergence or disappearance of surface flow represent the balance between subsurface transmissivity in the hyporheic zone and the delivery of water from upstream. Thus the dynamics of stream network expansion and contraction, and connection and disconnection, may offer important clues to the spatial structure of the hyporheic zone, and to patterns and processes of runoff generation. Copyright (c) 2014 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据