4.6 Article

Water balance analysis for the Tonle Sap Lake-floodplain system

期刊

HYDROLOGICAL PROCESSES
卷 28, 期 4, 页码 1722-1733

出版社

WILEY
DOI: 10.1002/hyp.9718

关键词

flood pulse; water balance model; floodplain; hydrology; Tonle Sap Lake; Mekong

资金

  1. Maa-ja vesitekniikan tuki ry
  2. Academy of Finland [111672, 133748]
  3. Aalto University
  4. Mekong River Commission
  5. Academy of Finland (AKA) [111672, 133748, 111672, 133748] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

The Tonle Sap Lake of Cambodia is the largest freshwater body of Southeast Asia, forming an important part of the Mekong River system. The lake has an extremely productive ecosystem and operates as a natural floodwater reservoir for the lower Mekong Basin, offering flood protection and assuring the dry season flow to the Mekong Delta. In light of the accelerating pace of water resources development within the Mekong Basin and the anticipation of potentially significant hydrological impacts, it is critical to understand the overall hydrologic regime of Tonle Sap Lake. We present here a detailed water balance model based on observed data of discharges from the lake's tributaries, discharge between Mekong and the lake through the Tonle Sap River, precipitation, and evaporation. The overland flow between the Mekong and lake was modelled with the EIA 3D hydrodynamic model. We found that majority (53.5%) of the water originates from the Mekong mainstream, but the lake's tributaries also play an important role contributing 34% of the annual flow, while 12.5% is derived from precipitation. The water level in the lake is mainly controlled by the water level in the Mekong mainstream. The Tonle Sap system is hence very vulnerable, from a water quantity point of view, to possible changes in the Mekong mainstream and thus, development activities in the whole Mekong basin. From a biogeochemical point of view, the possible changes in the lake's own catchment are equally important, together with the changes in the whole Mekong Basin. Based on our findings, we recommend of continuing the monitoring programmes in lake's tributaries and urgently starting of groundwater measurement campaign within the floodplain, and including the groundwater modelling to be part of the hydrodynamic models applied for the lake. Copyright (c) 2013 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据