4.6 Article

Combining the SWAT model with sequential uncertainty fitting algorithm for streamflow prediction and uncertainty analysis for the Lake Dianchi Basin, China

期刊

HYDROLOGICAL PROCESSES
卷 28, 期 3, 页码 521-533

出版社

WILEY
DOI: 10.1002/hyp.9605

关键词

streamflow; SWAT; SUFI-2 algorithm; uncertainty analysis; Lake Dianchi Basin

资金

  1. National Natural Science Foundation of China [41101180, 41222002]
  2. China National Water Pollution Control Program [2010ZX07102-006]

向作者/读者索取更多资源

Streams play an important role in linking the land with lakes. Nutrients released from agricultural or urban sources flow via streams to lakes, causing water quality deterioration and eutrophication. Therefore, accurate simulation of streamflow is helpful for water quality improvement in lake basins. Lake Dianchi has been listed in the Three Important Lakes Restoration Act' in China, and the degradation of its water quality has been of great concern since the 1980s. To assist environmental decision making, it is important to assess and predict hydrological processes at the basin scale. This study evaluated the performance of the soil and water assessment tool (SWAT) and the feasibility of using this model as a decision support tool for predicting streamflow in the Lake Dianchi Basin. The model was calibrated and validated using monthly observed streamflow values at three flow stations within the Lake Dianchi Basin through application of the sequential uncertainty fitting algorithm (SUFI-2). The results of the autocalibration method for calibrating and the prediction uncertainty from different sources were also examined. Together, the p-factor (the percentage of measured data bracketed by 95% prediction of uncertainty, or 95PPU) and the r-factor (the average thickness of the 95PPU band divided by the standard deviation of the measured data) indicated the strength of the calibration and uncertainty analysis. The results showed that the SUFI-2 algorithm performed better than the autocalibration method. Comparison of the SUFI-2 algorithm and autocalibration results showed that some snowmelt factors were sensitive to model output upstream at the Panlongjiang flow station. The 95PPU captured more than 70% of the observed streamflow at the three flow stations. The corresponding p-factors and r-factors suggested that some flow stations had relatively large uncertainty, especially in the prediction of some peak flows. Although uncertainty existed, statistical criteria including R-2 and Nash-Sutcliffe efficiency were reasonably determined. The model produced a useful result and can be used for further applications. Copyright (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据