4.6 Article

Exploring effects of rainfall intensity and duration on soil erosion at the catchment scale using openLISEM: Prado catchment, SE Spain

期刊

HYDROLOGICAL PROCESSES
卷 26, 期 7, 页码 1034-1049

出版社

WILEY
DOI: 10.1002/hyp.8196

关键词

soil erosion modelling; openLISEM; rainfall events; catchment scale

资金

  1. DESIRE, European Commission [037046]

向作者/读者索取更多资源

In semi-arid areas, high-intensity rainfall events are often held responsible for the main part of soil erosion. Long-term landscape evolution models usually use average annual rainfall as input, making the evaluation of single events impossible. Event-based soil erosion models are better suited for this purpose but cannot be used to simulate longer timescales and are usually applied to plots or small catchments. In this study, the openLISEM event-based erosion model was applied to the medium-sized (similar to 50 km(2)) Prado catchment in SE Spain. Our aim was to (i) test the model's performance for medium-sized catchments, (ii) test the ability to simulate four selected typical Mediterranean rainfall events of different magnitude and (iii) explore the relative contribution of these different storms to soil erosion using scenarios of future climate variability. Results show that because of large differences in the hydrologic response between storms of different magnitudes, each event needed to be calibrated separately. The relation between rainfall event characteristics and the calibration factors might help in determining optimal calibration values if event characteristics are known. Calibration of the model features some drawbacks for large catchments due to spatial variability in K-sat values. Scenario calculations show that although similar to 50% of soil erosion occurs as a result of high frequency, low-intensity rainfall events, large-magnitude, low-frequency events potentially contribute significantly to total soil erosion. The results illustrate the need to incorporate temporal variability in rainfall magnitude-frequency distributions in landscape evolution models. Copyright (C) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据