4.6 Article

Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil

期刊

HYDROBIOLOGIA
卷 726, 期 1, 页码 195-211

出版社

SPRINGER
DOI: 10.1007/s10750-013-1764-6

关键词

Soil carbon; Sea level rise; Everglades; Mangrove; Saltwater intrusion; Greenhouse gas production

资金

  1. Florida Coastal Everglades Long-Term Ecological Research program under National Science Foundation [DBI-0620409]
  2. Everglades Foundation
  3. Division Of Environmental Biology
  4. Direct For Biological Sciences [1237517] Funding Source: National Science Foundation

向作者/读者索取更多资源

Saltwater intrusion and inundation can affect soil microbial activity, which regulates the carbon (C) balance in mangroves and helps to determine if these coastal forests can keep pace with sea level rise (SLR). This study evaluated the effects of increased salinity (+15 ppt), increased inundation (-8 cm), and their combination, on soil organic C loss from a mangrove peat soil (Everglades, Florida, USA) under simulated tides. Soil respiration (CO2 flux), methane (CH4) flux, dissolved organic carbon (DOC) production, and porewater nutrient concentrations were quantified. Soil respiration was the major pathway of soil organic C loss (94-98%) and was approximately 90% higher in the control water level than the inundated treatment under elevated salinity. Respiration rate increased with water temperature, but depended upon salinity and tidal range. CH4 flux was minimal, while porewater DOC increased with a concomitant, significant decline in soil bulk density under increased inundation. Porewater ammonium increased (73%) with inundation and soluble reactive phosphorus increased (32%) with salinity. Overall, the decline in soil organic C mineralization from combined saltwater intrusion and prolonged inundation was not significant, but results suggest SLR could increase this soil's susceptibility to peat collapse and accelerate nutrient and DOC export to adjacent Florida Bay.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据