4.6 Article

Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers

期刊

HYDROBIOLOGIA
卷 685, 期 1, 页码 49-68

出版社

SPRINGER
DOI: 10.1007/s10750-011-0905-z

关键词

River bends; Flow dynamics; Habitat heterogeneity; Flow refugia; Ecosystem resilience; River restoration

资金

  1. Deutsche Forschungsgemeinschaft (DFG)
  2. Netherlands Organization for Scientific Research (NWO) [SU 405/3-1, DN66-]

向作者/读者索取更多资源

In freshwater environments, high biodiversity is commonly associated with habitat heterogeneity. River bends and meanders are particularly complex morphodynamic elements of watercourses. However, the specific spatio-temporal interactions between hydromorphology and the resident biota have scarcely been studied. This article reviews the relationships between hydraulic processes, and morphological units that are typical for meanders, and analyzes the concomitant spatial and temporal dynamics of habitats suitable for aquatic invertebrates. Flow in river bends is characterized by significant cross-stream velocities, which modify primary flow patterns, and create helical flow trajectories. Consequently, boundary shear stresses at the river-bed are altered, so that complex erosion, transport, and accumulation processes characteristically shape bed and bank morphology. The diversity of substrate types and complex bathymetry in meanders provide a large variety of habitat conditions for benthic invertebrates within a relatively small spatial domain, which are connected via hydraulic pathways. Periodic reversal of hydro-morphological processes between low and high flow, and seasonal growth of aquatic macrophytes creates spatio-temporal dynamics at the meso- and microhabitat scales. Such habitat dynamics increases benthic invertebrate diversity to the extent it is consistent with spatio-temporal scales of invertebrate mobility and life cycle. Furthermore, the presence of flow refugia, and hydraulic dead zones in meanders is essential to sustain species richness. This study concludes that meanders are highly complex morphodynamic elements that exhibit several self-regulating principles supporting invertebrate diversity and resilience in fluvial ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据