4.6 Article

High-resolution satellite remote sensing of littoral vegetation of Lake Sevan (Armenia) as a basis for monitoring and assessment

期刊

HYDROBIOLOGIA
卷 661, 期 1, 页码 97-111

出版社

SPRINGER
DOI: 10.1007/s10750-010-0466-6

关键词

Remote sensing; Littoral vegetation; Water level fluctuations; Spectral unmixing; Inversion; QuickBird

资金

  1. VW Foundation

向作者/读者索取更多资源

Physics-based remote sensing in littoral environments for ecological monitoring and assessment is a challenging task that depends on adequate atmospheric conditions during data acquisition, sensor capabilities and correction of signal disturbances associated with water surface and water column. Airborne hyper-spectral scanners offer higher potential than satellite sensors for wetland monitoring and assessment. However, application in remote areas is often limited by national restrictions, time and high costs compared to satellite data. In this study, we tested the potential of the commercial, high-resolution multi-spectral satellite QuickBird for monitoring littoral zones of Lake Sevan (Armenia). We present a classification procedure that uses a physics-based image processing system (MIP) and GIS tools for calculating spatial metrics. We focused on classification of littoral sediment coverage over three consecutive years (2006-2008) to document changes in vegetation structure associated with a rise in water levels. We describe a spectral unmixing algorithm for basic classification and a supervised algorithm for mapping vegetation types. Atmospheric aerosol retrieval, lake-specific parameterisation and validation of classifications were supported by underwater spectral measurements in the respective seasons. Results revealed accurate classification of submersed aquatic vegetation and sediment structures in the littoral zone, documenting spatial vegetation dynamics induced by water level fluctuations and inter-annual variations in phytoplankton blooms. The data prove the cost-effective applicability of satellite remote-sensing approaches for high-resolution mapping in space and time of lake littoral zones playing a major role in lake ecosystem functioning. Such approaches could be used for monitoring wetlands anywhere in the world.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据