4.7 Article

Character, distribution and biological implications of ice crystallization in cryopreserved rabbit ovarian tissue revealed by cryo-scanning electron microscopy

期刊

HUMAN REPRODUCTION
卷 25, 期 2, 页码 470-478

出版社

OXFORD UNIV PRESS
DOI: 10.1093/humrep/dep395

关键词

cryopreservation; electron microscopy; freezing; ovary; rabbit

资金

  1. Ferring Pharmaceuticals

向作者/读者索取更多资源

Ovarian tissue banking is an emerging strategy for fertility preservation which has led to several viable pregnancies after transplantation. However, the standard method of slow cooling was never rigorously optimized for human tissue nor has the extent and location of ice crystals in tissue been investigated. To address this, we used cryo-scanning electron microscopy (cryo-SEM) to study ice formation in cryopreserved ovarian tissue. Rabbit ovarian tissue slices were equilibrated in 1,2-propanediol-sucrose solution and cooled at either 0.3 degrees C/min or 3.0 degrees C/min after nucleating ice at -7 degrees C, or snap-frozen by plunging in liquid nitrogen. Frozen tissues were fractured, etched and coated with gold or prepared by freeze substitution and sectioning for cryo-SEM. The size, location and orientation of extracellular ice crystals were revealed as pits and channels that had grown radially between freeze-concentrated cellular materials. They represented 60% of the total volume in slowly cooled samples that were nucleated at -7 degrees C and the crystals, often > 30 mu m in length, displaced cells without piercing them. Samples cooled more rapidly were much less dehydrated, accounting for the presence of small ice crystals inside cells and possibly in organelles. Cryo-SEM revealed the internal structure of ovarian tissue in the frozen state was dominated by elongated ice crystals between islands of freeze-concentrated cellular matrix. Despite the grossly distorted anatomy, the greater degree of dehydration and absence of intracellular ice confirmed the superiority of a very slow rate of cooling for optimal cell viability. These ultrastructural methods will be useful for validating and improving new protocols for tissue cryopreservation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据