4.5 Article

How Much Mutant Protein Is Needed to Cause a Protein Aggregate Myopathy in Vivo? Lessons from an Exceptional Desminopathy

期刊

HUMAN MUTATION
卷 30, 期 3, 页码 E490-E499

出版社

WILEY
DOI: 10.1002/humu.20941

关键词

desmin; desminopathy; myofibrillar myopathy; vacuolar myopathy; protein aggregate myopathy

资金

  1. German ministry of education and research (BMBF)
  2. German Research Foundation [Fi 913/2-1]
  3. BONFOR
  4. Deutsche Gesellschaft fur Muskelkranke (DGM)

向作者/读者索取更多资源

Myofibrillar myopathies are caused by mutations in desmin, alpha B-crystallin, myotilin, ZASP, and filamin C genes. Since the vast majority of myofibrillar myopathy causing mutations are heterozygous single amino acid substitutions or small in-frame deletions, the pathogenic role of mutant versus wild-type protein cannot be assessed in human skeletal muscle by standard immunodetection techniques. We report on an exceptional desminopathy due to a heterozygous c.735G>C mutation. Immunoblotting detected full-length 53 kDa desmin and a truncated 50 kDa variant in skeletal muscle from three affected patients of two different families. RT-PCR identified three desmin mRNA species encoding for wild-type and two mutant proteins, p.Glu245Asp and p.Asp214_Glu245del. Since previous functional studies on the p.Glu245Asp mutant showed biological properties identical to wild-type desmin, the truncated p.Asp214_Glu245del desmin is the disease-causing mutant. Semiquantitative RT-PCR established a fraction of the truncated desmin mRNA species in a range from 24% to 37%. Initial quantification of corresponding desmin proteins in the muscle biopsy of the index patient of one family indicated a fraction of only 10% of the truncated species. However, serial analyses of different sections from each muscle biopsy revealed a high intra- and interindividual variability of the truncated desmin protein level within a range from 5% to 43%. Desmin assembly studies in vitro have established clear-cut pathogenic ratios of mutant versus wildtype proteins. However, our findings point out a far more complex situation in human skeletal muscle. The heterogeneously distributed mutation load within and between individual specimens, which reflects local differences in the expression and/or turnover of the mutant protein in different areas containing multiple myonuclear domains, renders it impossible to define an exact pathogenic threshold of a specific mutant in vivo. (C) 2008 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据