4.5 Article

6-mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCC4

期刊

HUMAN MUTATION
卷 29, 期 5, 页码 659-669

出版社

WILEY
DOI: 10.1002/humu.20694

关键词

ABC transporter; multidrug resistance protein 4; protein variants; Xenopus laevis oocytes; human hepatic expression; MRP4; ABCC4

向作者/读者索取更多资源

Multiple drug resistance protein 4 (MRP4, ABCC4) belongs to the C subfamily of the ATP-binding cassette (ABC) transporter superfamily and participates in the transport of diverse antiviral and chemotherapeutic agents such as 6-mercaptopurine (6-MP) and 9-(2-phosphonyl methoxyethyl) adenine (PMEA). We have undertaken a comprehensive functional characterization of protein variants of MRP4 found in Caucasians and other ethnicities. A total of 11 MRP4 missense genetic variants (nonsynonymous SNPs), fused to green fluorescent protein (GFP), were examined in Xenopus laevis oocytes for their effect on expression, localization, and function of the transporter. Radiolabeled 6-MP and PMEA were chosen as transport substrates. All MRP4 protein variants were found to be expressed predominantly in the oocyte membrane. A total of four variants (Y556C, E757K, V776I, and T1142M) exhibited a 20% to 40% reduced expression level compared to the wild type. Efflux studies showed that 6-MP is transported by MRP4 in unmodified form. Compared to wild-type MRP4, the transmembrane variant V776I, revealed a significant lower activity in 6,MP transport, while the amino acid exchange Y556C in the Walker(B) motif displayed significantly higher transport of PMEA. The transport properties of the other variants were comparable to Ad,type MRP4. Our study shows that Xenopus oocytes are well suited to characterize MRP4 and its protein variants. Carriers of the rare MRP4 variants Y556C and V776I may have altered disposition of MEN substrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据