4.5 Article

TGFBI (βIG-H3) is a diabetes-risk gene based on mouse and human genetic studies

期刊

HUMAN MOLECULAR GENETICS
卷 23, 期 17, 页码 4597-4611

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddu173

关键词

-

资金

  1. Canadian Institutes of Health Research [MOP57697, MOP123389]
  2. Heart and Stroke Foundation of Quebec
  3. Natural Sciences and Engineering Research Council of Canada [203906-2012]
  4. Juvenile Diabetes Research Foundation [17-2013-440]
  5. Jean-Louis Levesque Foundation

向作者/读者索取更多资源

Transforming growth factor beta-induced (TGFBI/beta IG-H3), also known as beta ig-H3, is a protein inducible by TGF beta 1 and secreted by many cell types. It binds to collagen, forms part of the extracellular matrix and interacts with integrins on the cell surface. Recombinant TGFBI and transgenic TGFBI overexpression can promote both islet survival and function. In this study, we generated TGFBI KO mice and further assessed TGFBI function and signaling pathways in islets. Islets from KO mice were of normal size and quantity, and these animals were normoglycemic. However, KO islet survival and function was compromised in vitro. In vivo, KO donor islets became inferior to wild-type donor islets in achieving normoglycemia when transplanted into KO diabetic recipients. TGFBI KO mice were more prone to straptozotocin-induced diabetes than the wild-type counterpart. Phosphoprotein array analysis established that AKT1S1, a molecule linking the AKT and mTORC1 signaling pathways, was modulated by TGFBI in islets. Phosphorylation of four molecules in the AKT and mTORC1 signaling pathway, i.e. AKT, AKT1S1, RPS6 and EIF4EBP1, was upregulated in islets upon TGFBI stimulation. Suppression of AKT activity by a chemical inhibitor, or knockdown of AKT1S1, RPS6 and EIF4EBP1 expression by small interfering RNA, modulated islet survival, proving the relevance of these molecules in TGFBI-triggered signaling. Human genetic studies revealed that in the TGFBI gene and its vicinity, three single-nucleotide polymorphisms were significantly associated with type 1 diabetes risks, and one with type 2 diabetes risks. Our study suggests that TGFBI is a potential risk gene for human diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据