4.5 Article

Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes

期刊

HUMAN MOLECULAR GENETICS
卷 23, 期 21, 页码 5733-5749

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddu288

关键词

-

资金

  1. European Foundation for the Study of Diabetes (EFSD)
  2. Crafoordska foundation
  3. Knut and Alice Wallenberg foundation
  4. Lars Hiertas Minne foundation
  5. Soderberg foundation
  6. O.E. och Edla Johansson foundation
  7. Albert Pahlsson foundation
  8. Swedish Research Council

向作者/读者索取更多资源

We have previously identified transcription factor B1 mitochondrial (TFB1M) as a type 2 diabetes (T2D) risk gene, using human and mouse genetics. To further understand the function of TFB1M and how it is associated with T2D, we created a beta-cell-specific knockout of Tfb1m, which gradually developed diabetes. Prior to the onset of diabetes, beta-Tfb1m(-/-) mice exhibited retarded glucose clearance owing to impaired insulin secretion. beta-Tfb1m(-/-) islets released less insulin in response to fuels, contained less insulin and secretory granules and displayed reduced beta-cell mass. Moreover, mitochondria in Tfb1m-deficient beta-cells were more abundant with disrupted architecture. TFB1M is known to control mitochondrial protein translation by adenine dimethylation of 12S ribosomal RNA(rRNA). Here, we found that the levels of TFB1M and mitochondrial-encoded proteins, mitochondrial 12S rRNA methylation, ATP production and oxygen consumption were reduced in beta-Tfb1m(-/-) islets. Furthermore, the levels of reactive oxygen species (ROS) in response to cellular stress were increased whereas induction of defense mechanisms was attenuated. We also show increased apoptosis and necrosis as well as infiltration of macrophages and CD4(+) cells in the islets. Taken together, our findings demonstrate that Tfb1m-deficiency in beta-cells caused mitochondrial dysfunction and subsequently diabetes owing to combined loss of beta-cell function and mass. These observations reflect pathogenetic processes in human islets: using RNA sequencing, we found that the TFB1M risk variant exhibited a negative gene-dosage effect on islet TFB1M mRNA levels, as well as insulin secretion. Our findings highlight the role of mitochondrial dysfunction in impairments of beta-cell function and mass, the hallmarks of T2D.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据