4.5 Article

Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43

期刊

HUMAN MOLECULAR GENETICS
卷 24, 期 6, 页码 1655-1669

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddu578

关键词

-

资金

  1. Motor Neuron Disease Research Institute of Australia
  2. Australian Rotary Health
  3. Orion-Farmos Research Foundation
  4. Helmholtz Society (DZNE) [VH-VI-510]
  5. BMBF (MND-NET)
  6. Australian Research Council Future Fellowship [DP110101368]

向作者/读者索取更多资源

Cytosolic accumulation of TAR DNA binding protein 43 (TDP-43) is a major neuropathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the mechanisms involved in TDP-43 accumulation remain largely unknown. Previously, we reported that inhibitors of cyclin-dependent kinases (CDKs) prevented cytosolic stress granule accumulation of TDP-43, correlating with depletion of heterogeneous ribonucleoprotein (hnRNP) K from stress granules. In the present study, we further investigated the relationship between TDP-43 and hnRNP K and their control by CDKs. Inhibition of CDK2 abrogated the accumulation of TDP-43 into stress granules. Phosphorylated CDK2 co-localized with accumulated TDP-43 and phosphorylated hnRNP K in stress granules. Inhibition of CDK2 phosphorylation blocked phosphorylation of hnRNP K, preventing its incorporation into stress granules. Due to interaction between hnRNP K with TDP-43, the loss of hnRNP K from stress granules prevented accumulation of TDP-43. Mutation of Ser216 and Ser284 phosphorylation sites on hnRNP K inhibited hnRNP K-and TDP-43-positive stress granule formation in transfected cells. The interaction between hnRNP K and TDP-43 was further confirmed by the loss of TDP-43 accumulation following siRNA-mediated inhibition of hnRNP K expression. A substantial decrease of CDK2 and hnRNP K expression in spinal cord motor neurons in ALS patients demonstrates a potential key role for these proteins in ALS and TDP-43 accumulation, indicating that further investigation of the association between hnRNP K and TDP-43 is warranted. Understanding how kinase activity modulates TDP-43 accumulation may provide new pharmacological targets for disease intervention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据