4.5 Article

Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality

期刊

HUMAN MOLECULAR GENETICS
卷 22, 期 7, 页码 1328-1347

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/dds540

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [Wi-946/13-1]
  2. Spanish Ministry of Education and Science [BFU2010-21648]

向作者/读者索取更多资源

F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regulator that restores main processes depending on actin dynamics in SMA motor neurons (MNs). MN soma size significantly increased and a higher number of afferent proprioceptive inputs were counted in SMA(PLS3) compared with SMA mice. PLS3 increased presynaptic F-actin amount, rescued synaptic vesicle and active zones content, restored the organization of readily releasable pool of vesicles and increased the quantal content of the neuromuscular junctions (NMJs). Most remarkably, PLS3 over-expression led to a stabilization of axons which, in turn, resulted in a significant delay of axon pruning, counteracting poor axonal connectivity at SMA NMJs. These findings together with the observation of increased endplate and muscle fiber size upon MN-specific PLS3 over-expression suggest that PLS3 significantly improves neuromuscular transmission. Indeed, ubiquitous over-expression moderately improved survival and motor function in SMA mice. As PLS3 seems to act independently of Smn, PLS3 might be a potential therapeutic target not only in SMA but also in other MN diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据