4.5 Article

Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson's disease models

期刊

HUMAN MOLECULAR GENETICS
卷 20, 期 20, 页码 3933-3942

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddr312

关键词

-

资金

  1. NIH/NINDS [P50NS38377]
  2. Michael J. Fox Foundation
  3. Howard Hughes Medical Institute

向作者/读者索取更多资源

Mutations in leucine-rich repeat kinase 2 (LRRK2) have been identified as a genetic cause of familial Parkinson's disease (PD) and have also been found in the more common sporadic form of PD, thus positioning LRRK2 as important in the pathogenesis of PD. Biochemical studies of the disease-causing mutants of LRRK2 implicates an enhancement of kinase activity as the basis of neuronal toxicity and thus possibly the pathogenesis of PD due to LRRK2 mutations. Previously, a chemical library screen identified inhibitors of LRRK2 kinase activity. Here, two of these inhibitors, GW5074 and sorafenib, are shown to protect against G2019S LRRK2-induced neurodegeneration in vivo in Caenorhabditis elegans and in Drosophila. These findings indicate that increased kinase activity of LRRK2 is neurotoxic and that inhibition of LRRK2 activity can have a disease-modifying effect. This suggests that inhibition of LRRK2 holds promise as a treatment for PD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据