4.5 Article

Genetic mouse models for Parkinson's disease display severe pathology in glial cell mitochondria

期刊

HUMAN MOLECULAR GENETICS
卷 20, 期 6, 页码 1197-1211

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddq564

关键词

-

资金

  1. German National Academic Foundation
  2. International Graduate School of Neuroscience Bochum
  3. Research School of the Ruhr-University Bochum
  4. Biofrontera Bioscience GmbH

向作者/读者索取更多资源

We recently described mitochondrial pathology in neurons of transgenic mice with genes associated with Parkinson's disease (PD). Now we describe severe mitochondrial damage in glial cells of the mesencephalon in mice carrying a targeted deletion of parkin (PaKO) or overexpressing doubly mutated human alpha-synuclein (asyn). The number of mitochondria with altered morphology in glial cells is cell type-dependent, but always higher than in neurons. Interestingly, mitochondrial damage also occurs inmesencephalic glia of mice carrying mutated asyn controlled by the tyrosine hydroxylase promoter. Such mice do not show glial expression of the transgene, but show expression in neighboring neurons. However, we found strong overexpression of endogenous asyn in mesencephalic astrocytes from these mice. Cortical astrocytes neither display enhanced asyn expression nor mitochondrial damage. Cultivated mesencephalic astrocytes from newborn transgenic mice display various functional defects along with the morphological damage of mitochondria. First, the mitochondrial Ca2(+)-storage capacity is reduced in asyn transgenic mesencephalic astrocytes, but not in astrocytes from PaKO. Second, the expression of the mitochondrial protein PTEN-induced putative kinase is constitutively increased in asyn transgenic mice, while in PaKO it reacts to oxidative stress by overexpressing this protein along with other mitochondria-related proteins. Third, the neurotrophic effects exerted by control astrocytes, stimulating cortical neurons from healthy mice to develop longer processes and larger neuronal areas, are lacking in co-cultures with transgenic mesencephalic astrocytes. In summary, glial mitochondria from transgenic mice display morphological and functional alterations. Such transgenic astrocytes fail to influence neuronal differentiation, reflecting an important role that glia may play in PD pathogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据