4.5 Article

Impaired motoneuronal retrograde transport in two models of SBMA implicates two sites of androgen action

期刊

HUMAN MOLECULAR GENETICS
卷 20, 期 22, 页码 4475-4490

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddr380

关键词

-

资金

  1. National Institute of Health [NS045195, NS055746]
  2. Ruth L. Kirchstein National Research Service [1F32AR055848-01, T32-MH070343]
  3. Michigan State University

向作者/读者索取更多资源

Spinal and bulbar muscular atrophy (SBMA) impairs motor function in men and is linked to a CAG repeat mutation in the androgen receptor (AR) gene. Defects in motoneuronal retrograde axonal transport may critically mediate motor dysfunction in SBMA, but the site(s) where AR disrupts transport is unknown. We find deficits in retrograde labeling of spinal motoneurons in both a knock-in (KI) and a myogenic transgenic (TG) mouse model of SBMA. Likewise, live imaging of endosomal trafficking in sciatic nerve axons reveals disease-induced deficits in the flux and run length of retrogradely transported endosomes in both KI and TG males, demonstrating that disease triggered in muscle can impair retrograde transport of cargo in motoneuron axons, possibly via defective retrograde signaling. Supporting the idea of impaired retrograde signaling, we find that vascular endothelial growth factor treatment of diseased muscles reverses the transport/trafficking deficit. Transport velocity is also affected in KI males, suggesting a neurogenic component. These results demonstrate that androgens could act via both cell autonomous and non-cell autonomous mechanisms to disrupt axonal transport in motoneurons affected by SBMA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据