4.5 Article

The common missense mutation D489N in TRIM32 causing limb girdle muscular dystrophy 2H leads to loss of the mutated protein in knock-in mice resulting in a Trim32-null phenotype

期刊

HUMAN MOLECULAR GENETICS
卷 20, 期 20, 页码 3925-3932

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddr311

关键词

-

资金

  1. National Institute of Arthritis, Musculoskeletal and Skin Diseases [RO1 AR052693, RO1 AR/NS48177]
  2. NIAMS [P30AR057230-01]
  3. Muscular Dystrophy Association

向作者/读者索取更多资源

Mutations in tripartite motif protein 32 (TRIM32) are responsible for several hereditary disorders that include limb girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathy (STM) and Bardet Biedl syndrome. Most LGMD2H mutations in TRIM32 are clustered in the NHL beta-propeller domain at the C-terminus and are predicted to interfere with homodimerization. To get insight into TRIM32's role in the pathogenesis of LGMD2H and to create an accurate model of disease, we have generated a knock-in mouse (T32KI) carrying the c.1465G > A (p.D489N) mutation in murine Trim32 corresponding to the human LGMD2H/STM pathogenic mutation c.1459G > A (p.D487N). Our data indicate that T32KI mice have both a myopathic and a neurogenic phenotype, very similar to the one described in the Trim32-null mice that we created previously. Analysis of Trim32 gene expression in T32KI mice revealed normal mRNA levels, but a severe reduction in mutant TRIM32 (D489N) at the protein level. Our results suggest that the D489N pathogenic mutation destabilizes the protein, leading to its degradation, and results in the same mild myopathic and neurogenic phenotype as that found in Trim32-null mice. Thus, one potential mechanism of LGMD2H might be destabilization of mutated TRIM32 protein leading to a null phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据