4.5 Article

The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal β-actin mRNA translocation in spinal motor neurons

期刊

HUMAN MOLECULAR GENETICS
卷 19, 期 10, 页码 1951-1966

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddq073

关键词

-

资金

  1. Herrmann and Lilly Schilling Stiftung
  2. SMA Foundation
  3. Deutsche Forschungsgemeinschaft [GK 1048, SFB 581, TP B1, B20]

向作者/读者索取更多资源

Axonal transport and translation of beta-actin mRNA plays an important role for axonal growth and presynaptic differentiation in many neurons including hippocampal, cortical and spinal motor neurons. Several beta-actin mRNA-binding and transport proteins have been identified, including ZBP1, ZBP2 and hnRNP-R. hnRNP-R has been found as an interaction partner of the survival motor neuron protein that is deficient in spinal muscular atrophy. Little is known about the function of hnRNP-R in axonal beta-actin translocation. hnRNP-R and beta-actin mRNA are colocalized in axons. Recombinant hnRNP-R interacts directly with the 3'-UTR of beta-actin mRNA. We studied the role of hnRNP-R in motor neurons by knockdown in zebrafish embryos and isolated mouse motor neurons. Suppression of hnRNP-R in developing zebrafish embryos results in reduced axon growth in spinal motor neurons, without any alteration in motor neuron survival. ShRNA-mediated knockdown in isolated embryonic mouse motor neurons reduces beta-actin mRNA translocation to the axonal growth cone, which is paralleled by reduced axon elongation. Dendrite growth and neuronal survival were not affected by hnRNP-R depletion in these neurons. The loss of beta-actin mRNA in axonal growth cones of hnRNP-R-depleted motor neurons resembles that observed in Smn-deficient motor neurons, a model for the human disease spinal muscular atrophy. In particular, hnRNP-R-depleted motor neurons also exhibit defects in presynaptic clustering of voltage-gated calcium channels. Our data suggest that hnRNP-R-mediated axonal beta-actin mRNA translocation plays an essential physiological role for axon growth and presynaptic differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据