4.5 Article

Suppression of GFAP toxicity by αB-crystallin in mouse models of Alexander disease

期刊

HUMAN MOLECULAR GENETICS
卷 18, 期 7, 页码 1190-1199

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddp013

关键词

-

资金

  1. NICHD NIH HHS [HD03352] Funding Source: Medline
  2. NINDS NIH HHS [NS42803, NS060120, P01 NS042803, R01 NS060120] Funding Source: Medline

向作者/读者索取更多资源

Alexander disease (AxD) is a primary disorder of astrocytes caused by dominant mutations in the gene for glial fibrillary acidic protein (GFAP). These mutations lead to protein aggregation and formation of Rosenthal fibers, complex astrocytic inclusions that contain GFAP, vimentin, plectin, ubiquitin, Hsp27 and alpha B-crystallin. The small heat shock protein alpha B-crystallin (Cryab) regulates GFAP assembly, and elevation of Cryab is a consistent feature of AxD; however, its role in Rosenthal fibers and AxD pathology is not known. Here, we show in AxD mouse models that loss of Cryab results in increased mortality, whereas elevation of Cryab rescues animals from terminal seizures. When mice with Rosenthal fibers induced by over-expression of GFAP are crossed into a Cryab-null background, over half die at 1 month of age. Restoration of Cryab expression through the GFAP promoter reverses this outcome, showing the effect is astrocyte-specific. Conversely, in mice engineered to express both AxD-associated mutations and elevated GFAP, which despite natural induction of Cryab also die at 1 month, transgenic over-expression of Cryab results in a markedly reduced CNS stress response, restores expression of the glutamate transporter Glt1 (EAAT2) and protects these animals from death. In its most common form, AxD is a devastating neurodegenerative disease, with early onset, characterized by seizures, spasticity and developmental delays, ultimately leading to death. Cryab plays a critical role in tempering AxD pathology and should be investigated as a therapeutic target for this and other diseases with astropathology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据