4.5 Article

A murine model of Denys-Drash syndrome reveals novel transcriptional targets of WT1 in podocytes

期刊

HUMAN MOLECULAR GENETICS
卷 19, 期 1, 页码 1-15

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddp462

关键词

-

资金

  1. INSERM
  2. Universite Paris Descartes
  3. Association pour l'Utilisation du Rein Artificiel
  4. French National Research Agency ANR [GLOMGENE: ANR-08-GENOPAT-017]
  5. Amgen-Societe de Nephrologie
  6. Ministere de l'Enseignement Superieur et de la Recherche
  7. Medical Research Council [MC_U127527180] Funding Source: researchfish
  8. MRC [MC_U127527180] Funding Source: UKRI

向作者/读者索取更多资源

The Wilms tumor-suppressor gene WT1, a key player in renal development, also has a crucial role in maintenance of the glomerulus in the mature kidney. However, molecular pathways orchestrated by WT1 in podocytes, where it is highly expressed, remain unknown. Their defects are thought to modify the cross-talk between podocytes and other glomerular cells and ultimately lead to glomerular sclerosis, as observed in diffuse mesangial sclerosis (DMS) a nephropathy associated with WT1 mutations. To identify podocyte WT1 targets, we generated a novel DMS mouse line, performed gene expression profiling in isolated glomeruli and identified excellent candidates that may modify podocyte differentiation and growth factor signaling in glomeruli. Scel, encoding sciellin, a protein of the cornified envelope in the skin, and Sulf1, encoding a 6-O endosulfatase, are shown to be expressed in wild-type podocytes and to be strongly down-regulated in mutants. Co-expression of Wt1, Scel and Sulf1 was also found in a mesonephric cell line, and siRNA-mediated knockdown of WT1 decreased Scel and Sulf1 mRNAs and proteins. By ChIP we show that Scel and Sulf1 are direct WT1 targets. Cyp26a1, encoding an enzyme involved in the degradation of retinoic acid, is shown to be up-regulated in mutant podocytes. Cyp26a1 may play a role in the development of glomerular lesions but does not seem to be regulated by WT1. These results provide novel clues in our understanding of normal glomerular function and early events involved in glomerulosclerosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据