4.5 Article

Stabilization of β-catenin in XY gonads causes male-to-female sex-reversal

期刊

HUMAN MOLECULAR GENETICS
卷 17, 期 19, 页码 2949-2955

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddn193

关键词

-

资金

  1. National Institute of Child Health and Human Development [F32HD055791]

向作者/读者索取更多资源

During mammalian sex determination, expression of the Y-linked gene Sry shifts the bipotential gonad toward a testicular fate by upregulating a feed-forward loop between FGF9 and SOX9 to establish SOX9 expression in somatic cells. We previously proposed that these signals are mutually antagonistic with counteracting signals in XX gonads and that a shift in the balance of these factors leads to either male or female development. Evidence in mice and humans suggests that the male pathway is opposed by the expression of two signals, WNT4 and R-SPONDIN-1 (RSPO1), that promote the ovarian fate and block testis development. Both of these ligands can activate the canonical Wnt signaling pathway. Duplication of the distal portion of chromosome 1p, which includes both WNT4 and RSPO1, overrides the male program and causes male-to-female sex reversal in XY patients. To determine whether activation of beta-catenin is sufficient to block the testis pathway, we have ectopically expressed a stabilized form of beta-catenin in the somatic cells of XY gonads. Our results show that activation of beta-catenin in otherwise normal XY mice effectively disrupts the male program and results in male-to-female sex-reversal. The identification of beta-catenin as a key pro-ovarian and anti-testis signaling molecule will further our understanding of the mechanisms controlling sex determination and the molecular mechanisms that lead to sex-reversal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据