4.5 Article

Antisense-Induced Messenger Depletion Corrects a COL6A2 Dominant Mutation in Ullrich Myopathy

期刊

HUMAN GENE THERAPY
卷 23, 期 12, 页码 1313-1318

出版社

MARY ANN LIEBERT INC
DOI: 10.1089/hum.2012.109

关键词

-

资金

  1. Italian Ministry of Education, Universities, and Research [PRIN 2008PB5S89]
  2. Telethon Foundation Italy [GGP07004]

向作者/读者索取更多资源

Collagen VI gene mutations cause Ullrich and Bethlem muscular dystrophies. Pathogenic mutations frequently have a dominant negative effect, with defects in collagen VI chain secretion and assembly. It is agreed that, conversely, collagen VI haploinsufficiency has no pathological consequences. Thus, RNA-targeting approaches aimed at preferentially inactivating the mutated COL6 messenger may represent a promising therapeutic strategy. By in vitro studies we obtained the preferential depletion of the mutated COL6A2 messenger, by targeting a common single-nucleotide polymorphism (SNP), cistronic with a dominant COL6A2 mutation. We used a 2'-O-methyl phosphorothioate (2'OMePS) antisense oligonucleotide covering the SNP within exon 3, which is out of frame. Exon 3 skipping has the effect of depleting the mutated transcript via RNA nonsense-mediated decay, recovering the correct collagen VI secretion and restoring the ability to form an interconnected microfilament network into the extracellular matrix. This novel RNA modulation approach to correcting dominant mutations may represent a therapeutic strategy potentially applicable to a great variety of mutations and diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据